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Abstract

The goal of this paper is to extend an L-topological group to a complete L-topological group, which necessitates formalizing the
completion of an L-topological group. In so doing, we introduce the notion of the completion of an L-uniform space in the sense of
Gähler, Bayoumi, Kandil and Nouh.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper, we give new notions for L-filters in the sense of [13], L-uniform spaces in the sense of [15] and
L-topological groups in the sense of [3], respectively, called U-Cauchy filter, complete L-uniform space and complete
L-topological group. We define U-Cauchy filters for L-uniform spaces, characterize complete L-uniform spaces, and
subsequently characterize complete L-topological groups. Completions of L-uniform spaces and L-topological groups
are characterized and studied. Many important theorems of the classical theory of uniform spaces and topological
groups are, respectively, extended to L-uniform spaces and L-topological groups.

In Section 2, we recall some results on L-filters and L-neighborhood filters defined by Gähler in [11,13,14]. We also
define the product of two L-sets and the product of two L-filters.

The notion of U-Cauchy filter in an L-uniform space (X, U) is introduced and studied in Section 3. We show that
any convergent L-filter is a U-Cauchy filter and that the converse holds in complete L-uniform spaces.

Section 4 extends an L-uniform space to a complete L-uniform space. The completion of an L-uniform space is given
as a reduced extension of an L-uniform space with a complete L-uniform structure.

The notion of the completion of an L-topological group is introduced in Section 5. Using the bilateral L-uniform
structure Ub = U l ∨ U r which is the supremum of the left invariant L-uniform structure U l and the right invariant L-
uniform structure U r of an L-topological group (G, �) as defined in [8], we define the notion of a complete L-topological
group. A complete separated L-topological group (H, �) in which (G, �) is a dense subgroup will be called a completion
of (G, �).
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There are other filter approaches to uniform space in the fuzzy case. Gutiérrez Garcia et al. introduced in [17] a
unification to these approaches using L-filters. In our filter approach to fuzzy uniform spaces we use a notion of L-filter
different from that given in [17] (more precisely, our condition (F1) is different from [17]). So, our approach is not the
same as [17]. A deeper comparison could be done in future work.

2. On L-filters

In this section, we recall and prove some results concerning L-filters needed in the paper. Denote by LX the set of
all L-subsets of a non-empty set X, where L is a complete chain with different least and greatest elements 0 and 1,
respectively [16]. We may note that L0 = L \ {0}. For each L-set � ∈ LX, let �′ denote the complement of �, defined
by �′(x) = �(x)′ for all x ∈ X. For all x ∈ X and � ∈ L0, the L-subset x� of X with value � at x and 0 otherwise is
called an L-it point in X and the L-subset of X with constant value � will be denoted by �.

2.1. L-filters

By an L-filter on a non-empty set X we mean [13] a mapping M : LX → L such that M(�)�� for all � ∈ L,
M( 1) = 1, and M(� ∧ �) = M(�) ∧ M(�) for all �, � ∈ LX. M ia called homogeneous [11] if M(�) = � for all
� ∈ L. If M and N are L-filters on X, M is called finer than N , denoted by M�N , provided M(�)�N (�) holds
for all � ∈ LX.

Let FLX denote the set of all L-filters on X, f : X → Y a mapping and M, N are L-filters on X, Y, respectively.
Then the image of M and the preimage of N with respect to f are the L-filters FLf (M) onY and F−

L f (N ) on X defined
by FLf (M)(�) = M(�◦f ) for all � ∈ LY and F−

L f (N )(�) = ∨
�◦f �� N (�) for all � ∈ LX, respectively. For each

mapping f : X → Y and each L-filter N on Y, for which the preimage F−
L f (N ) exists, we have FLf (F−

L f (N ))�N .
Moreover, for each L-filter M on X, the inequality M�F−

L f (FLf (M)) holds [13].
For each non-empty set A of L-filters on X, the supremum

∨
M∈A M with respect to the finer relation of L-filters

exists and we have( ∨
M∈A

M
)

(f ) =
∧

M∈A

M(f )

for all f ∈ LX. The infimum
∧

M∈A M of A exists if and only if for each non-empty finite subset {M1, . . . ,Mn} of
A we have M1(�1)∧ · · · ∧Mn(�n)� sup(�1 ∧ · · · ∧ �n) for all �1, . . . , �n ∈ LX [11]. If the infimum of A exists, then
for each � ∈ LX and n a positive integer we have( ∧

M∈A

M
)

(�) =
∨

�1∧···∧�n � �,

M1,...,Mn∈A

(M1(�1) ∧ · · · ∧ Mn(�n)).

By a filter on X we mean a non-empty subset F of LX which does not contain 0 and closed under finite infima and
super sets [18]. For each L-filter M on X, the subset �-pr M of LX defined by: �-pr M = {� ∈ LX|M(�)��} is a
filter on X.

A family (B�)�∈L0 of non-empty subsets of LX is called a valued L-filter base on X [13] if the following conditions
are fulfilled:

(V1) � ∈ B� implies �� sup �.
(V2) For all �, � ∈ L0 and all L-sets � ∈ B� and � ∈ B�, if � ∧ � > 0 holds, then there are a ��� ∧ � and an L-set

	�� ∧ � such that 	 ∈ B�.

Each valued L-filter base (B�)�∈L0 on a set X defines an L-filter M on X by M(�) = ∨
�∈B�,��� � for all � ∈ LX. On

the other hand, each L-filter M can be generated by many valued L-filter bases, and among them the greatest one is
(�-pr M)�∈L0 . We may note that L-filters are called fuzzy filters in [13–15] and also filters are called prefilters in [16].
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Proposition 2.1 (Gähler [13]). There is a one-to-one correspondence between the L- filters M on X and the families
(M�)�∈L0 of filters on X which fulfill the following conditions:

(1) f ∈ M� implies �� sup f .
(2) 0 < ��� implies M� ⊇ M�.
(3) For each � ∈ L0 with

∨
0<�<� � = � we have

⋂
0<�<� M� = M�.

This correspondence is given by M� = �-pr M for all � ∈ L0 and M(f ) = ∨
g∈M�, g �f � for all f ∈ LX.

2.2. L-neighborhood filters

In the following, the topology in sense of [10,16] will be used which will be called L-topology. int� and cl� denote
the interior and the closure operators with respect to the L-topology �, respectively. For each L-topological space (X, �)
and each x ∈ X the mapping N (x) : LX → L defined by N (x)(�) = int� �(x) for all � ∈ LX is an L-filter on X, called
the L-neighborhood filter of the space (X, �) at x, and for short is called a �-neighborhood filter at x. The mapping
ẋ : LX → L defined by ẋ(�) = �(x) for all � ∈ LX is a homogeneous L-filter on X. Let (X, �) and (Y, �) be two
L-topological spaces. Then the mapping f : (X, �) → (Y, �) is called L-continuous (or (�, �)-continuous) provided
int� � ◦ f � int� (� ◦ f ) for all � ∈ LY . An L-filter M is said to converge to x ∈ X, denoted by M �

�
x, if M�N (x)

[14]. The L-neighborhood filter N (F ) at an ordinary subset F of X is the L-filter on X defined by the authors in [5], by
means of N (x), x ∈ F as

N (F ) =
∨
x∈F

N (x).

The L-filter Ḟ is defined by Ḟ = ∨
x∈F ẋ. Ḟ �N (F ) holds for all F ⊆ X.

Lemma 2.1 (Gähler [14]). Let (X, �) and (Y, �) be two L-topological spaces and M an L-filter on X. If f : X → Y

is a (�, �)-continuous mapping, then M �
�

x implies that FLf (M) �
�

f (x) holds.

To define the product of two L-filters, first we need to define the product of two L-sets.
For any �, � ∈ LX, let � × � : X × X → L be the L-set defined as follows:

(� × �)(x, y) = �(x) ∧ �(y) (2.1)

for all x, y ∈ X.

Remark 2.1. For all �, �, 
, � ∈ LX, we have

(� ∧ �) × (
 ∧ �) = (� × 
) ∧ (� × �) = (� × �) ∧ (� × 
).

The following proposition introduces the product of two L-filters.

Proposition 2.2. For any two L-filters L, M on X, the mapping L × M : LX×X → L defined by

(L × M)(u) =
∨

�×��u

(L(�) ∧ M(�)) (2.2)

for all u ∈ LX×X is an L-filter on X × X, called the product L-filter of L and M.

Proof. From (2.1) and that L, M are L-filters, we get

(L × M)(̃�) =
∨

�×�� �̃

(L(�) ∧ M(�))��.

Moreover, (L × M)(̃1) = 1.
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From Remark 2.1 and for all u, v ∈ LX×X, we get

(L × M)(u) ∧ (L × M)(v) =
∨

�×��u

(L(�) ∧ M(�)) ∧
∨


×��v

(L(
) ∧ M(�))

=
∨

�×��u, 
×��v

(L(� ∧ 
) ∧ M(� ∧ �))

�
∨

(�∧
)×(�∧�)�u∧v

(L(� ∧ 
) ∧ M(� ∧ �))

= (L × M)(u ∧ v).

Also,

(L × M)(u ∧ v) =
∨

�×��u∧v

(L(�) ∧ M(�)

�
∨

�×��u, �×��v

(L(�) ∧ M(�))

=
∨

�×��u

(L(�) ∧ M(�)) ∧
∨

�×��v

(L(�) ∧ M(�))

= (L × M)(u) ∧ (L × M)(v).

Hence, (L × M) is an L-filter on X × X. �

The product of two L-filters provides the following result.

Lemma 2.2. Let L and M be L-filters on X, and let (L�)�∈L0 and (M�)�∈L0 be the families of filters on X correspond,
according to Proposition 2.1, to L and M, respectively. Then the family (K�)�∈L0 of subsets K� of LX×X, where

K� = {� × �|� ∈ L�, � ∈ M�} (2.3)

is a family of filters on X × X which corresponds to the product L-filter L × M.

Proof. Since L� and M� are non-empty subsets of LX for all � ∈ L0, then also K� = {� × �|� ∈ L�, � ∈ M�} is
non-empty for any � ∈ L0. Also, 0 does not exist in L� or M� implies that 0 /∈ K� for all � ∈ L0. From Remark 2.1
and from the fact that L� and M� are filters, for all u, v ∈ K� and w�v we get u∧ v ∈ K� and w ∈ K� for all � ∈ L0.
That is, K�, for all � ∈ L0, is a filter on X × X.

Let u ∈ K�. Then u = � × �, where � ∈ L� and � ∈ M�. From condition (1) for L� and M�, we get ��sup � and
��sup � and then ��sup (� × �) = sup u. Hence, K� provides condition (1) of Proposition 2.1.

Let 0 < ��� and u ∈ K�. Then u = � × � for � ∈ L� and � ∈ M�. Since L� ⊇ L� and M� ⊇ M�, then � ∈ L�
and � ∈ M� and hence u ∈ K�. That is, K� fulfills the requirements of condition (2) of Proposition 2.1.

Since
⋂

0<�<� L� = L� and
⋂

0<�<� M� = M�, we get that⋂
0<�<�

K� =
⋂

0<�<�

{� × �|� ∈ L�, � ∈ M�}

=
⎧⎨⎩� × �|� ∈

⋂
0<�<�

L�, � ∈
⋂

0<�<�

M�

⎫⎬⎭
= {� × �|� ∈ L�, � ∈ M�}
= K�.

This means that condition (3) of Proposition 2.1 also holds for K�.
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Hence, according to Proposition 2.1, we get a one-to-one correspondence between the family (K�)�∈L0 of the filters
on X × X defined by (2.3) and the product L-filter L × M on X × X defined by (2.2). Therefore,

(L × M)(u) =
∨

v∈K�, v �u

� and �-pr (L × M) = K�

for all u ∈ LX×X and for all � ∈ L0. �

3. U -Cauchy filters

This section is devoted to study a notion of Cauchy filter on L-uniform spaces as defined in [15].

3.1. L-uniform spaces

An L-filter U on X × X is called an L-uniform structure on X [15] if the following conditions are fulfilled:

(U1) (x, x)
. �U for all x ∈ X;

(U2) U = U−1;
(U3) U ◦ U �U .

Where (x, x)
Q
(u) = u(x, x), U−1(u) = U(u−1) and (U ◦ U)(u) = ∨

v◦w�u U(v ∧ w) for all u ∈ LX×X, and
u−1(x, y) = u(y, x) and (v ◦ w)(x, y) = ∨

z∈X(w(x, z) ∧ v(z, y)) for all x, y ∈ X.
A set X equipped with an L-uniform structure U is called an L-uniform space.
To each L-uniform structure U on X is associated a stratified L-topology �U whose interior operator is given by

(intU �)(x) = U[ẋ](�)

for all x ∈ X and all � ∈ LX, where U[ẋ](�) = ∨
u[�]�� (U(u) ∧ �(x)) and u[�](x) = ∨

y∈X (�(y) ∧ u(y, x)). For
all x ∈ X we have

U[ẋ] = N (x),

where N (x) is the L-neighborhood filter of the space (X, �U ) at x. That is, an L-filter M on an L-uniform space (X, U)

is said to converge to x ∈ X if M�U[ẋ].
Let U be an L-uniform structure on a set X. Then u ∈ LX×X is called a surrounding provided U(u)�� for some

� ∈ L0 and u = u−1 [8].
Given a surrounding u in (X, U), a subset A ⊆ X is called small of order u if u(x, y)�� for all x, y ∈ A and for

some � ∈ L0.

Definition 3.1. In an L-uniform space (X, U), an L-filter M on X is said to be a U-Cauchy filter provided that for any
surrounding u, there exists a set B ⊆ X such that M�Ḃ and B is small of order u.

Now, we prove the following expected result for the convergent L-filters.

Proposition 3.1. Every convergent L-filter on an L-uniform space (X, U) is a U-Cauchy filter.

Proof. Let M be an L-filter on X which converges to x ∈ X, that is, M�U[ẋ]. Then we can choose a set B ⊆ X such
that M�Ḃ = U[ẋ] which means

M(�)�
∨

u[�]��

(U(u) ∧ �(x)) =
∧
y∈B

�(y) = Ḃ(�)

for all � ∈ LX. Since (x, x)
Q �U for all x ∈ X, then u(x, x)�U(u)�� for any surrounding u and for some � ∈ L0.

Now, x ∈ B implies that ẋ�U[ẋ] = Ḃ holds. Also, for any y ∈ B we get
∨

u[�]�� (�∧�(x))��(y), and consequently∨
z (u(z, y) ∧ �(z))��(y), and so � ∧ �(x)�u(x, y) ∧ �(x)��(y). Thus, for all x, y ∈ B, we have u(x, y)�� for
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some � ∈ L0 and M�Ḃ. Hence, there is a set B ⊆ X which is small of order any surrounding u in (X, U) and M�Ḃ,
and therefore M is a U-Cauchy filter on X. �

Let A be a subset of a set X, U an L-uniform structure on X and i : A ↪→ X the inclusion mapping of A into X. Then
the initial L-uniform structure F−

L (i × i)(U) of U with respect to i, denoted by UA, is called an L-uniform substructure
of U and (A, UA) an L-uniform subspace of (X, U) [2].

We have the following result.

Lemma 3.1. Let (X, U) be an L-uniform space and A a non-empty subset of X. Then an L-filter on A is a UA-Cauchy
filter if and only if it is a U-Cauchy filter.

Proof. Let M be a UA-Cauchy filter on A. Then there exists B ⊆ A with M�Ḃ and B small of order any surrounding
uA in (A, UA). This means that there is B ⊆ A ⊆ X such that M�Ḃ and uA(x, y)�� for all x, y ∈ B and for some
� ∈ L0. That is, for any surrounding u in (X, U),

u(x, y) = (u ◦ (i × i))(x, y) = uA(x, y)��

for all x, y ∈ B and for some � ∈ L0, and then M�Ḃ and B ⊆ X is small of order any surrounding u in (X, U).
Hence, M is a U-Cauchy filter.

Conversely, if M is a U-Cauchy filter on X, then there exists B ⊆ A ⊆ X with M�Ḃ and B is small of order
any surrounding u in (X, U). Hence, u(x, y)�� for all x, y ∈ B and for some � ∈ L0, which means that, for every
surrounding uA in (A, UA),

uA(x, y) = (u ◦ (i × i))(x, y) = u(x, y)��

for all x, y ∈ B and for some � ∈ L0. Therefore, M�Ḃ and B ⊆ A is small of order any surrounding uA in (A, UA),
that is, M is a UA-Cauchy filter. �

A mapping f : (X, U) → (Y, V) between L-uniform spaces (X, U) and (Y, V) is said to be L-uniformly continuous
(or (U, V)-continuous) provided that

FL(f × f )(U) � V
holds.

In the next sections we shall use the following result.

Lemma 3.2. Let (X, U) and (Y, V) be L-uniform spaces and f : X → Y a (U, V)-continuous mapping. If M is a
U-Cauchy filter, then FLf (M) is a V-Cauchy filter.

Proof. M is a U-Cauchy filter on X means that there exists B ⊆ X such that M�Ḃ and B is small of order any
surrounding u in (X, U). This means that M�Ḃ and u(x, y)�� for all x, y ∈ B and for some � ∈ L0 which implies
that

FLf (M)�FLf (Ḃ) = ˙(f (B))

holds for the set f (B) ⊆ Y . Let v be a surrounding in (Y, V). Since f is (U, V)-continuous, we have

��V(v)�U(v ◦ (f × f )) = FL(f × f )(U)(v)

for some � ∈ L0. Since v = v−1, then (v ◦ (f × f ))−1 = v−1 ◦ (f × f ) = v ◦ (f × f ). That is, u = v ◦ (f × f ) is a
surrounding in (X, U) which means that

��u(x, y) = (v ◦ (f × f ))(x, y) = v(f (x), f (y))

for all f (x), f (y) ∈ f (B) and for some � ∈ L0. Hence, FLf (M)� ˙(f (B)) for the set f (B) ⊆ Y and f (B) is small
of order every surrounding in (Y, V). Therefore, FLf (M) is a V-Cauchy filter on Y. �
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4. Completion of L-uniform spaces

Here, we introduce a notion of the completion of an L-uniform space.
Firstly, some general results.
If (Y, �) is an L-topological space and X is a non-empty subset of Y, then the initial L-topology of �, with respect to

the inclusion mapping i : X ↪→ Y , is the L-topology i−1(�) = {i−1(�)|� ∈ �} on X and is denoted by �X.
An L-topological space (Y, �) is called an extension of the L-topological space (X, �) if X ⊆ Y , � = �X and X is

�-dense in Y, that is, cl�X = Y .
The extension (Y, �) of (X, �) is called reduced if for any x �= y in Y and x ∈ Y\X, we have N�(x) �= N�(y), where

N�(x) denotes the L-neighborhood filter of (Y, �) at a point x ∈ Y .

4.1. GTi-spaces

In [4,5,7], we have introduced and studied the notion of GTi-spaces for all i = 0, 1, 2, 3, 3 1
2 , 4 as follows.

An L-topological space (X, �) is called [4,5,7]:

(1) GT0 if for all x, y ∈ X with x �= y we have ẋ�N (y) or ẏ�N (x).
(2) GT1 if for all x, y ∈ X with x �= y we have ẋ�N (y) and ẏ�N (x).
(3) GT2 if for all x, y ∈ X with x �= y, we have M�N (x) or M�N (y) for all L-filters M on X.
(4) Regular if for all x /∈ F and F = cl�F , N (x) ∧ N (F ) does not exist.
(5) GT3 if it is GT1 and regular.
(6) Completely regular if for all x /∈ F ∈ �′, there exists an L- continuous mapping f : (X, �) → (IL, �) such that

f (x) = 1 and f (y) = 0 for all y ∈ F .
(7) GT3 1

2
(or L-Tychonoff ) if it is GT1 and completely regular.

In the following GTi-space means an L-topological space which is GTi , i = 0, 1, 2, 3, 3 1
2 .

Proposition 4.1 (Bayoumi and Ibedou [4,5,7]). Every GTi-space is a GTi−1-space for each i = 1, 2, 3, and every
GT3 1

2
-space is a GT3-space.

Now, we have the following results.

Lemma 4.1. If the extension (Y, �) of (X, �) is a GT0-space, then (Y, �) is a reduced extension of (X, �).

Proof. Straightforward. �

Lemma 4.2. Any reduced extension (Y, �) of a GT0-space (X, �) is a GT0-space.

Proof. For all x �= y in Y\X, we have N�(x) �= N�(y). Also for all x �= y in X, we have N�(x) �= N�(y). Hence, for
all x �= y in Y we get that N�(x) �= N�(y), and thus (Y, �) is a GT0-space. �

Since for all f, g ∈ LX, int� f (y) = f (x) for some x ∈ X implies that int� f (y) ∧∧x∈X g(x)�f (x) holds for
some x ∈ X and also int� f (y) ∧∧x∈X g(x)�g(x) holds for all x ∈ X, then int� f (y) ∧∧x∈X g(x)�sup(f ∧ g)

for all f, g ∈ LX. That is, the infimum N�(y) ∧ Ẋ exists. This provides the following.

Remark 4.1. Let (X, �) be an L-topological space and X ⊆ Y . If we succeed in defining an L-topology � on Y such
that (Y, �) is an extension of (X, �), then X �-dense in Y implies that every �-neighborhood of each y ∈ Y intersects X,
that is, the infimum N�(y) ∧ Ẋ exists.

Definition 4.1. Let (X, �) and (Y, �) be two L-topological spaces. If (Y, �) is an extension of (X, �), then, for any
x ∈ Y , an L-filter N�(x) ∧ Ẋ is said to be a trace filter at x.

The filter N�(x) ∧ Ẋ is denoted by Mx . Obviously, Mx = N�(x) whenever x ∈ X. It is clear that Mx
�
�

x.
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Definition 4.2. Let (X, �) and (Y, �) be two L-topological spaces, (X′, �∗) an extension of (X, �) and let f : X → Y

be a (�, �)-continuous mapping. Then the restriction mapping g|X on X of the (�∗, �)-continuous mapping g : X′ → Y ,
which coincides with f, is called a continuous extension of f into X′.

Remark 4.2. Let (X, �) and (Y, �) be two L-topological spaces, (X′, �∗) an extension of (X, �), f : X → Y a mapping
and Mx = N�∗(x) ∧ Ẋ a trace filter on X at x ∈ X′. For the existence of a continuous extension g : X′ → Y , it is
necessary that f be (�, �)-continuous and FLf (Mx) �

�
x for a trace filter Mx at x ∈ X′. If (Y, �) is a regular space,

then these conditions also are sufficient. It is clear that Mx
�
�

x.

Lemma 4.3. With the notations in Remark 4.2, let g1 : X′ → Y and g2 : X′ → Y be (�∗, �)-continuous. If (Y, �) is a
GT2-space and g1|X = g2|X = f , then g1 = g2.

Proof. Let x ∈ X′ be arbitrary and Mx
�
�∗ x. From Lemma 2.1, we get FLg1(Mx) �

�
g1(x) and FLg2(Mx)

�
�

g2(x) holds. Also we have FLg1(Mx) = FLg2(Mx) = FLf (Mx). Since (Y, �) is a GT2-space, then g1(x) =
g2(x). Thus g1 = g2. �

Lemma 4.4. An extension (Y, �) of (X, �) is reduced if and only if Mx �= My for all x �= y in Y and x ∈ Y\X.

Proof. The proof follows from the fact that

Mx = N�(x) ∧ Ẋ �= N�(y) ∧ Ẋ = My

if and only if N�(x) �= N�(y). �

Definition 4.3. An L-uniform space (Y, U∗) is called an extension of the L-uniform space (X, U) if X ⊆ Y , U = U∗
X

and X is a �U∗ -dense in Y.

Definition 4.4. An L-uniform space (Y, U∗) is called a reduced extension of an L-uniform space (X, U) if (Y, �U∗) is
a reduced extension of (X, �U ).

An L-uniform structure U on a set X is called separated [6] if for all x, y ∈ X with x �= y there is u ∈ LX×X such
that U(u) = 1 and u(x, y) = 0. The space (X, U) is called a separated L-uniform space.

Proposition 4.2 (Bayoumi and Ibedou [6]). Let X be a set, U an L-uniform structure on X and �U the L-topology
associated with U . Then (X, U) is separated if and only if (X, �U ) is GT0-space.

Lemma 4.5. If (X, U) is a separated L-uniform space and (Y, U∗) is a reduced extension of (X, U), then (Y, U∗) is
separated as well.

Proof. From Proposition 4.2, we get (X, �U ) is a GT0-space. Since (Y, �U∗) is a reduced extension of (X, �U ), then
by Lemma 4.2 we have (Y, �U∗) is a GT0-space. Again by Proposition 4.2, we get that (Y, U∗) is separated. �

Now, we introduce the notion of the complete L-uniform space and its completion which is defined similarly as in
the classical case by using the Cauchy and convergent filters on uniform spaces but in the setting of fuzzy spaces.

Definition 4.5. An L-uniform space (X, U) is called complete if every U-Cauchy filter M on X is convergent.

Definition 4.6. An L-uniform space (Y, U∗) is called a completion of an L-uniform space (X, U) if it is a reduced
extension of (X, U) and U∗ is complete.

Lemma 4.6. The completion of a separated L-uniform space is separated as well.
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Proof. The result follows from Lemma 4.5. �

5. Completion of L-topological groups

In this section, we introduce main notion of this paper, that completion of L-topological groups.

5.1. L-topological groups

Let G be a multiplicative group. We denote, as usual, the identity element of G by e and the inverse of an element a
of G by a−1.

Definition 5.1 (Ahsanullah [1] and Bayoumi [3]). Let G be a group and � an L-topology on G. Then (G, �) will be
called an L-topological group if the mappings

� : (G × G, � × �) → (G, �) defined by �(a, b) = ab for all a, b ∈ G

and

i : (G, �) → (G, �) defined by i(a) = a−1 for all a ∈ G

are L-continuous. � and i are the binary operation and the unary operation of the inverse on G, respectively.

For all � ∈ LG, denote by �i the L-set �◦ i in G, that is, �i (x) = �(x−1) for all x ∈ G. We also denote FL�(L×M)

by LM and FLi(M) by Mi , which means that LM(�) = L × M(� ◦ �) and Mi (�) = M(�i ) for all L-filters L, M
on G and all L-sets � ∈ LG.

A surrounding u ∈ LX×X is called left (right) invariant provided

u(ax, ay) = u(x, y), (u(xa, ya) = u(x, y)) for all a, x, y ∈ X.

U is called a left (right) invariant L-uniform structure if U has a valued L-filter base consists of left (right) invariant
surroundings [8].

The following proposition introduces the left (right) invariant L-uniform spaces compatible with an L-topological
group.

Proposition 5.1 (Bayoumi and Ibedou [8]). Let (G, �) be an L-topological group. Then there exist on G a unique left
invariant L-uniform structure U l and a unique right invariant L-uniform structure U r compatible with �, constructed
using the family (�-pr N (e))�∈L0 of all filters �-pr N (e), where N (e) is the L-neighborhood filter at the identity element
e of (G, �), as follows:

U l(u) =
∨

v∈U l
�, v �u

� and U r(u) =
∨

v∈U r
�, v �u

�, (5.1)

where

U l
� = �-pr U l and U r

� = �-pr U r (5.2)

are defined by

U l
� = {u ∈ LG×G|u(x, y) = (� ∧ �i )(x−1y) for some � ∈ �-pr N (e)} (5.3)

and

U r
� = {u ∈ LG×G|u(x, y) = (� ∧ �i )(xy−1) for some � ∈ �-pr N (e)} (5.4)

We should notice that we shall fix the notations U l, U r, U l
� and U r

� along the paper to be these defined above.
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Definition 5.2. Ub = U l ∨ U r is called the bilateral L-uniform structure of the L-topological group (G, �).

Remark 5.1. M is a Ub-Cauchy filter if it is a U l-Cauchy filter and a U r-Cauchy filter simultaneously.

Remark 5.2 (cf. Bayoumi and Ibedou [8]). For the L-topological group (G, �), the elements of U l
� (U r

�) are left (right)
invariant surroundings. Moreover, (U l

�)�∈L0 ((U r
�)�∈L0 ) is a valued L-filter base for the left (right) invariant L-uniform

structure U l (U r) defined by (5.1)–(5.4), respectively.

An L-filter M on a set X is called countable if the sets �-prM are countable for all � ∈ L0 [9].
Now, suppose that (G, �) has a countable L-neighborhood filter N (e) at the identity e. By Proposition 5.1, every

L-topological groups is uniformizable, so that the left and the right invariant L-uniform structures U l and U r has, from
Remark 5.2, a countable valued L-filter base (U l

1/n)n∈N and (U r
1/n)n∈N, respectively.

We may recall that if (G, �) is an L-topological group and A is a subgroup of G, then the L-topological subspace
(A, �A) is called an L-topological subgroup [3].

Proposition 5.2. Let (A, �A) be an L-topological subgroup of an L-topological group (G, �), U a complete L-uniform
structure on G compatible with �, and let UA be the L-uniform structure on A compatible with �A. Then, we get the
following results.

(d1) If L and M are UA-Cauchy filters, so is LM.
(d2) If M is a UA-Cauchy filter, so is Mi .

Proof. By Lemma 3.1, L and M also are U-Cauchy filters. U complete implies that L �
�

x and M �
�

y hold for

some x, y ∈ G, that is, L�N (x) and M�N (y). Now, for each 
 ∈ LG we have

LM(
) = FL�(L × M)(
)

= L × M(
 ◦ �)

=
∨

�×��
◦�
L(�) ∧ M(�)

�
∨

�×��
◦�
N (x)(�) ∧ N (y)(�)

=
∨

�×��
◦�
int� �(x) ∧ int� �(y)

� int� 
(xy)

= N (xy)(
).

That is, LM �
�

xy and hence, LM is a U-Cauchy filter and hence, from Proposition 3.1 and Lemma 3.1,

a UA-Cauchy filter.
Similarly, each UA-Cauchy filter M is a U-Cauchy filter and then M �

�
x. By Lemma 2.1, Mi (�) = FLi(M)

�
�

i(x) = x−1. This means that Mi is a U-Cauchy filter and also a UA-Cauchy filter. �

Definition 5.3. An L-uniform structure U of an L-topological group (G, �) is said to be admissible if �U = � and the
conditions (d1) and (d2) in Proposition 5.2 are fulfilled.

Definition 5.4. An L-topological group (G, �) is called complete if its bilateral L-uniform structure Ub is complete.
(G, �) is called left complete (right complete) if it is complete and its left (right) L-uniform structure U l (U r) is admissible.

Lemma 5.1. The inverse mapping i : (G, �) → (G, �), i(x) = x−1, on any L-topological group (G, �) is (U l, U r)-
continuous and (U r, U l)-continuous. Moreover, U r = FL(i × i)(U l), U l = FL(i × i)(U r).
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Proof. For u ∈ U l
� and for some � ∈ � - pr N (e), we have

(u ◦ (i × i))(x, y) = u(x−1, y−1) = (� ∧ �i )(xy−1) = w(x, y)

for some w ∈ U r
�. Since FL(i × i)(U l)(u) = U l(u ◦ (i × i)) for all u ∈ LX×X, then FL(i × i)(U l)(u) = U r(u) for

all u ∈ LX×X, and hence i is a (U l, U r)-continuous. Similarly, we get that FL(i × i)(U r) = U l and i is a (U r, U l)-
continuous. �

Proposition 5.3. M is a U l-Cauchy filter in an L-topological group (G, �) if, and only if, Mi is a U r-Cauchy filter.

Proof. Since, from Lemma 5.1, the mapping i : (G, U l) → (G, U r) is (U l, U r)-continuous, then M is a U l-
Cauchy filter which implies, from Lemma 3.2, that FL(i)(M) = Mi is a U r-Cauchy filter. Similarly, the converse
follows. �

Proposition 5.4 (Gähler et al. [15]). Let (X, U) and (Y, V) be two L-uniform spaces. A mapping f : (X, �U ) →
(Y, �V ) is L-continuous if, and only if, f is (U, V)-continuous.

We also have this result.

Lemma 5.2. If U and V are two L-uniform structures on an L-topological group (G, �) and both L and M are
U-(V-) Cauchy filters on G, then L × M is a U × U-(V × V-) Cauchy filter on G × G.

Proof. From Proposition 2.2, L×M is an L-filter on G×G. Let L and M be U-Cauchy filters on G. Then there exist
A, B ⊆ G such that L�Ȧ and M�Ḃ and A, B are small of order every surrounding u in (G, U). Now,

(L × M)(u) =
∨

�×��u

(L(�) ∧ M(�))

�
∨

�×��u

(Ȧ(�) ∧ Ḃ(�))

=
∨

�×��u

∧
x∈A, y∈B

�(x) ∧ �(y)

=
∨

�×��u

∧
x∈A, y∈B

� × �(x, y)

= u(A, B)

= ˙(A × B)(u)

for all u ∈ LG×G. That is, there exists A × B ⊆ G × G such that L × M� ˙(A × B).
Let 
 : (G × G) × (G × G) → L be a mapping and u a surrounding in (G, U). Then from Proposition 5.4, � is

(U × U, U)-continuous, and thus

��U(u)�FL(� × �)(U × U)(u) = U × U(u ◦ (� × �)) = U × U(
).

Also, u = u−1 implies that


−1 = (u ◦ (� × �))−1 = u−1 ◦ (� × �) = u ◦ (� × �) = 
,

that is, 
 is a surrounding in (G×G, U ×U), and for any surrounding 
 in (G×G, U ×U), there exists a surrounding
u in (G, U) such that 
 = u ◦ (� × �).

Now, ��u(x, y) for all x, y ∈ A and ��u(r, s) for all r, s ∈ B and for some �, � ∈ L0 imply that 
((x, r), (y, s)) =
(u ◦ (�×�))((x, r), (y, s)) = u(xr, ys). Choosing (x, y) = (e, e) or (r, s) = (e, e), we get that u(xr, ys)�� for some
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� ∈ L0. That is, for all (x, r), (y, s) ∈ A × B, we have 
((x, r), (y, s))�� for some � ∈ L0. This means that A × B

is small of order every surrounding in (G × G, U × U). Therefore, L × M is a U × U-Cauchy filter. �

Proposition 5.5. If U l and U r are the left and the right L-uniform structures of an L-topological group (G, �) and both
of L and M are U l-(U r-) Cauchy filters, then LM has the same property.

Proof. From Lemmas 5.2 and 3.2, we have LM = FL�(L × M) is a U l-(U r-) Cauchy filter. �

Accordingly, for U l and U r the property of being admissible depends on the fact whether condition (d2) of Proposition
5.2 is fulfilled.

The left and the right L-uniform structures U l and U r of an L-topological group enjoy the following properties.

Proposition 5.6. The following statements are equivalent in any L-topological group (G, �).
(1) If M is a U l-Cauchy filter, so is Mi ;
(2) If M is a U r-Cauchy filter, so is Mi ;
(3) Every U l-Cauchy filter is a U r-Cauchy filter;
(4) Every U r-Cauchy filter is a U l-Cauchy filter;
(5) U l is admissible;
(6) U r is admissible.

Proof. (1) ⇐⇒ (5) and (2) ⇐⇒ (6) come from Proposition 5.5.
(1) ⇐⇒ (2) follows from Proposition 5.3 and that (Mi )i = M.
From (1) if M is a U l-Cauchy filter, then Mi is a U l-Cauchy filter, and thus M, from Proposition 5.3, is a U r-

Cauchy filter. Hence, (1) �⇒ (3); On the other hand, if (3) is fulfilled, then M is a U l-Cauchy filter implies that it is a
U r-Cauchy filter and thus Mi is a U l-Cauchy filter. That is, (1) ⇐⇒ (3).

(2) ⇐⇒ (4) is obtained similarly. �

Proposition 5.7. If the left L-uniform structure U l or the right L-uniform structure U r of an L-topological group (G, �)
is complete, then the other one is complete as well and both are admissible.

Proof. If U l is complete and M is a U r-Cauchy filter, then from Proposition 5.3, Mi is a U l-Cauchy filter, thus
Mi �

�
x in G and then M �

�
x−1. Hence, U r is complete, and the completeness of U l follows by the same way

from the completeness of U r.
At last, M is a U l-Cauchy filter implies that M converges to x ∈ G, that is, M�U l[ẋ], and then Mi �U l[ ˙x−1].

From Proposition 3.1, Mi is a U l-Cauchy filter. Proposition 5.6 implies that both U l and U r are admissible. �

Lemma 5.3. If Ub is the bilateral L-uniform structure of an L-topological group (G, �), then i is (Ub, Ub)-continuous.

Proof. From that U l �Ub and U r �Ub, we get FL(i × i)U l �Ub and FL(i × i)U r �Ub hold, and thus

FL(i × i)Ub = FL(i × i)U l ∨ FL(i × i)U r �Ub.

Hence, i is (Ub, Ub)-continuous. �

5.2. L-metric spaces

L-topological groups fulfill good results related to notions of L-pseudometric and L-metric spaces. We use here the
notion of L-metric space defined by means of the notion of L-real numbers as defined in [12]. By an L-real number it
is understood [12] a convex, normal, compactly supported and upper semi-continuous L-subset of the set of all real
numbers R. The set of all L-real numbers is denoted by RL. R is canonically embedded into RL, identifying each real
number a with the crisp L-number a∼ defined by a∼(
) = 1 if 
 = a and 0 otherwise. The set of all positive L-real
numbers is defined and denoted by: R∗

L = {x ∈ RL | x(0) = 1 and 0∼ �x} [12].
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A mapping � : X × X −→ R∗
L is called an L-metric [12] on X if the following conditions are fulfilled:

(1) �(x, y) = 0∼ if and only if x = y;
(2) �(x, y) = �(y, x);
(3) �(x, y)��(x, z) + �(z, y).

If � : X × X −→ R∗
L satisfied the conditions (2) and (3) and the following condition:

(1)′ �(x, y) = 0∼ if x = y

then it is called an L-pseudometric on X.
A set X equipped with an L-pseudometric (L-metric) � on X is called an L-pseudometric (L-metric) space.
To each L-pseudometric (L-metric) � on a set X is generated canonically a stratified L-topology �� on X which has

{� ◦ �x |� ∈ E, x ∈ X} as a base, where �x : X → R∗
L is the mapping defined by �x(y) = �(x, y) and

E = {� ∧ R�|R∗
L
|� > 0, � ∈ L } ∪ { �|� ∈ L },

where � has R∗
L as domain.

An L-topological space (X, �) is called pseudometrizable (metrizable) if there is an L-pseudometric (L-metric) � on
X inducing �, that is, � = ��.

An L-pseudometric � is called left (right) invariant if

�(x, y) = �(ax, ay), (�(x, y) = �(xa, ya)) for all a, x, y ∈ X.

An L-topological group (G, �) is called separated if for the identity element e, we have
∧

�∈�-prN (e) �(e)��, and∧
�∈�-prN (e) �(x) < � for all x ∈ G with x �= e and for all � ∈ L0 [8].
Now, we have the following result.

Proposition 5.8 (Bayoumi and Ibedou [9]). Let (G, �) be a (separated) L-topological group. Then the following state-
ments are equivalent.

(1) � is pseudometrizable (metrizable);
(2) e has a countable L-neighborhood filter N (e);
(3) � can be induced by a left invariant L-pseudometric (L-metric);
(4) � can be induced by a right invariant L-pseudometric (L-metric).

Definition 5.5. An L-uniform structure U on a set X is called pseudometrizable (metrizable) if there exists a countable
L-uniform base for U (and U is separated).

Proposition 5.9. For any (separated) L-topological group (G, �), the L-uniform structures U l, U r and Ub constructed
in (5.1)–(5.4) are pseudometrizable (metrizable).

Proof. From Proposition 5.8, we have � = ��1
= ��2

where �1 and �2 are a left invariant L-pseudometric (L-metric)
and a right invariant L-pseudometric (L-metric) on G, respectively. Hence, U�1

is left invariant and U�2
is right invariant.

From Proposition 5.1, U l and U r are unique, that is, U�1
= U l, U�2

= U r and U l, U r are pseudometrizable (metrizable).
Moreover, �Ub = �U l∨U r = �U l ∨ �U r = �. Hence, Ub is pseudometrizable (metrizable) as well. �

Proposition 5.10 (Bayoumi [2]). Let (X, U) be an L-uniform space, (A, UA) an L-uniform subspace of (X, U) and
(�U )A the L-subtopology of the L-topology �U associated with U . Then the L-topology associated to UA coincides with
(�U )A, that is, �(UA) = (�U )A.

Lemma 5.4. Let (A, �A) be an L-topological subgroup of an L-topological subgroup (G, �). If U l, U r and Ub are the
left, the right and the bilateral L-uniform structures of (G, �), then the corresponding L-uniform structures of (A, �A)

are (U l)A, (U r)A and (Ub)A, respectively.
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Proof. From Proposition 5.10, we have �(U l)A
= (�U l)A = �A and U l and then (U l)A is left invariant as well. Hence,

(U l)A is the left invariant L-uniform structure of (A, �A). By the same (U r)A is the right invariant L-uniform structure
of (A, �A) as well. Moreover,

�Ub
A

= �(U l
A∨U r

A) = �U l
A

∨ �U r
A

= (�U l)A ∨ (�U r )A = (�Ub)A = �A. �

Definition 5.6. A complete separated L-topological (H, �) is said to be a completion of a separated L-topological
group (G, �) if (G, �) is a �-dense subgroup of (H, �).

To give the essential result in this section, that characterization of the completion of an L-topological group, we need
the following results.

Proposition 5.11 (Bayoumi and Ibedou [8]). Let (G, �) be an L-topological group. Then the following statements are
equivalent.

(1) The L-topology � is GT0.
(2) The L-topology � is GT2.
(3) The L-topological group (G, �) is separated.

Proposition 5.12. Let (G, �) be a separated L-topological group, U an admissible L-uniform structure on G, and
(H, V) the completion of (G, U). Then an operation �′ : H × H → H can be defined on H in a unique way so that H
equipped with �′ is a group, and (H, �V ) is an L-topological group of which (G, �) is a subgroup.

Proof. Let � = �V . If �′ : H ×H → H is defined by �′(y, z) = yz for all y, z ∈ H , then �′|G×G = �. Now, let Lx and
My be two trace filters on H at x and y into H, respectively. Since Lx

�
�

x and My
�
�

y, that is, Lx(�)� int� �(x)

and My(�)� int� �(y), then

LxMy(
) = FL�′(Lx × My)(
)

= Lx × My(
 ◦ �′)
=

∨
�×��
◦�′

Lx(�) ∧ My(�)

�
∨

�×��
◦�′
int� �(x) ∧ int� �(y)

� int� 
(xy)

= N�(xy)(
)

and then LxMy
�
�

xy. From the fact that U is separated and from Lemma 4.6 and Proposition 5.11, we get (H, �)

is a GT2-space. Therefore, these properties, using Lemma 4.3 and Remark 4.2, define �′ in a unique way as the only
continuous extension of � into H ×H . Also, if i′ : H → H is defined by i′(y) = y−1 for all y ∈ H , then i′|G = i and
FLi′(Lx) = Li′

x
�
�

x−1 for any trace filter Lx on H, and i′ is (�, �)-continuous, that is, as in before, i′ is a continuous

extension of i defined in a unique way.
Since �′ is (� × �, �)-continuous and i′ is (�, �)-continuous, we have (H, �) is an L-topological group in which

(G, �) is an L-topological subgroup. �

Proposition 5.13. Under the hypothesis of Proposition 5.12, if the left, the right or the bilateral L-uniform structure
of (H, �U∗) is U∗l, U∗r, or U∗b, respectively, then the corresponding L-uniform structures of (G, �) is (U∗l)G, (U∗r)G,
or (U∗b)G.

Proof. It is a consequence of Lemma 5.4. �

The following proposition summarizes the results of this paper and give the completion of an L-topological group
as characterized in Proposition 5.12.
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Proposition 5.14. Let (G, �) be a separated L-topological group, Ub its bilateral L-uniform structure, and (H, � = �V )

the L-topological group constructed in Proposition 5.12 with the choice V = Vb. Then (H, �) is a completion of (G, �).

Proof. If U = Ub, then Proposition 5.12 can be applied and Ub is admissible since both of U l and U r are admissible.
Also, V is a complete separated L-uniform structure such that � = �V , G is �-dense in H and (V)G = Ub. On the other
hand, by Proposition 5.13, for the bilateral L-uniform structure Vb of the L-topological group (H, �) we have � = �(Vb)

and (Vb)G = Ub. Therefore, the bilateral L-uniform structure Vb of (H, �) is complete and (H, �) is a completion of
(G, �). �
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